UML 2 State Machine Diagrams



State Machine Diagrams

* UML state machine diagrams depict the various states that an
object may be in and the transitions between those states.

* In other modeling languages, it is common for this type of a
diagram to be called a state-transition diagram or even simply a
state diagram.

sm Profocol State Matl‘una/'

Opened Closed

Create Clese! [doaddiay-*zEmphy]

Opens
Lodd Unlagy

Loaked




State Machine Diagrams

= States - A state is denoted by a round-cornered rectangle
with the name of the state written inside it.

sm State

* |Initial and Final States - The initial state is denoted by a filled
black circle and may be labeled with a name. The final state is
denoted by a circle with a dot inside and may also be labeled
with a name. |[sm nitisi and Firat /

Alive
Craale Drastiay
Invitial Final




State Machine Diagrams

* Transitions - Transitions is a progression from one state to another are
denoted by lines with arrowheads. A transition may have a trigger, a
guard and an effect.

* Self-Transitions - A state can have a transition that returns to itself, as in
the following diagram. This is most useful when an effect is associated

Wlth thE transition. g S¢ll Transition /
sm Transition /J after 2 seconds fpoll input

Sourca Stale Target State
Trigger [Guard] /Effect

\

* "Trigger" is the cause of the transition, which could be a signal, an event,
a change in some condition, or the passage of time. "Guard" is a condition
which must be true in order for the trigger to cause the transition. "Effect"
is an action which will be invoked directly on the object that owns the
state machine as a result of the transition.



+—— Activity

- Transition




[all items available]
::

[an item is not available]



Super state

* A super-state is used when many transitions
lead to the a certain state. Instead of showing
all of the transitions from each state to the
redundant state a super-state can be used to
show that all of the states inside of the super-
state can transition to the redundant state.

* This helps make the state diagram easier to
read.



Super state

i
/" Checking

(all teme avalabie] _(~ Dispatching

\dn { check items

o

\ to / initiate delivery /

WV

rCanl:uIed W

i

W

(ﬁali?rﬂ_ﬂ

"




State Machine Diagrams

* Compound States - A state machine diagram may include sub-machine
diagrams, as in the example below.

nm Compourss

r

Erapck Fil

LTS Balll

imaalid]

am ‘-'.-Prrwm/

Cren ki PEM

L]

[pin Dk]

Saanch Netweri

nateck fegnd

passer ot

Alternative way to

show the same
information

*The == symbol indicates that detalls of the Check PIN
sub-machine are shown in a separate diagram.



State Machine Diagrams

* Choice Pseudo-State - A choice pseudo-state is shown as a diamond with
one transition arriving and two or more transitions leaving. The following
diagram shows that whichever state is arrived at, after the choice pseudo-
state, is dependent on the message format selected during execution of
the previous state.

=m Cholca

[Voice] J Creating Voice

r-—L Message

Salacting Message Cresting SMS
[SMS] .|

Format \ Message
/’

Cresting Fax
Message

[F )




State Machine Diagrams
* Junction Pseudo-State - lunction pseudo-states are used to chain together
multiple transitions. A single junction can have one or more incoming, and one
or more outgoing, transitions; a guard can be applied to each transition.
Junctions are semantic-free. A junction which splits an incoming transition into
multiple outgoing transitions realizes a static conditional branch, as opposed
to a choice pseudo-state which realizes a dynamic conditional branch.

sm Junction

Receiwving Yoioe
Massage

Cramling Yolce
Message

[Raply=vaica]

Receiving SMS
Massage

) (

[Reply=ShiS)

Receiwving Fasx
Massage

)

Crasling SMS
Maszage

(

)

[R&plysF ax)

Cramlirg Fax
Mas=age

)




-

State Machine Diagrams

Concurrent Regions - A state may be divided into regions containing sub-
states that exist and execute concurrently. The example below shows that
within the state "Applying Brakes", the front and rear brakes will be
operating simultaneously and independently. Notice the use of fork and
join pseudo-states, rather than choice and merge pseudo-states. These
symbols are used to synchronize the concurrent threads.

=m Concurrant Regions /

Applying Brakes
[Frond]
-
Frort Brakes

Rear Brakes




